Zero distribution of polynomials satisfying a differential-difference equation
نویسندگان
چکیده
منابع مشابه
Zero Distribution of Random Polynomials
We study global distribution of zeros for a wide range of ensembles of random polynomials. Two main directions are related to almost sure limits of the zero counting measures, and to quantitative results on the expected number of zeros in various sets. In the simplest case of Kac polynomials, given by the linear combinations of monomials with i.i.d. random coefficients, it is well known that th...
متن کاملUsing DD-operators to construct orthogonal polynomials satisfying higher order difference or differential equations
We introduce the concept of D-operators associated to a sequence of polynomials (pn)n and an algebra A of operators acting in the linear space of polynomials. In this paper, we show that this concept is a powerful tool to generate families of orthogonal polynomials which are eigenfunctions of a higher order difference or differential operator. Indeed, given a classical discrete family (pn)n of ...
متن کاملOrthogonal matrix polynomials satisfying second order difference equations
We develop a method that allows us to construct families of orthogonal matrix polynomials of size N ×N satisfying second order difference equations with polynomial coefficients. The existence (and properties) of these orthogonal families strongly depends on the non commutativity of the matrix product, the existence of singular matrices and the matrix size N .
متن کاملBrenstien polynomials and its application to fractional differential equation
The paper is devoted to the study of Brenstien Polynomials and development of some new operational matrices of fractional order integrations and derivatives. The operational matrices are used to convert fractional order differential equations to systems of algebraic equations. A simple scheme yielding accurate approximate solutions of the couple systems for fractional differential equations is ...
متن کاملComputing difference-differential Gröbner bases and difference-differential dimension polynomials
Difference-differential Gröbner bases and the algorithms were introduced by M.Zhou and F.Winkler (2006). In this paper we will make further investigations for the key concept of S-polynomials in the algorithm and we will improve technically the algorithm. Then we apply the algorithm to compute the differencedifferential dimension polynomial of a difference-differential module and of a system of...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Analysis and Applications
سال: 2014
ISSN: 0219-5305,1793-6861
DOI: 10.1142/s0219530514500390